SILYL-CUPRATION OF ALLENE. A NEW ROUTE TO SILYLATED SYNTHONS

P. Cuadrado, A.M. González and F.J. Pulido* Departamento de Quimica Organica. Universidad de Valladolid. 47011-Valladolid. Spain.

Ian Fleming University Chemical Laboratory Lensfield Road, Cambridge CB2 lEW, U.K.

Abstract. Silyl-cupration of allene followed by treatment with iodine anomalously gives the vinyl iodide 4, a versatile synthetic intermediate.

Recently, we reported the synthesis of allylsilanes and vinylsilanes by silyl-cupration of allenes with lithium bis(phenyldimethylsilyl)cuprate.¹ Whether allyl- or vinylsilanes were formed depended upon the degree of substitution of the allene. With allene itself (1) , lithium bis(phenyldimethylsilyl)cuprate, prepared from phenyldimethylsilyl-lithium and copper(I) cyanide,² gave a silylated allyl-copper intermediate <u>2</u>, which reacted with electrophiles (methyl iodide, acetyl chloride and cyclohexenone) to give the vinyl silanes 3^1 (Scheme 1).

Surprisingly, we now find that the reaction of the same intermediate with iodine (THF, -70ºC, 1h), does not give the vinylsilane but gives instead the allylsilane 4^3 , whereas chlorine behaves like the other electrophiles and gives the vinylsilane 5^3 . On the other hand, 5 reacts with sodium iodide to give the expected allyl iodide $6³$.

Whatever the reason for this remarkable change in regiochemistry, the vinyl iodide 4 is a versatile synthetic intermediate; it can be lithiated by metal-iodine exchange (n-BuLi, -70ºC, 30 min), and the resulting silylated C_3 -nucleophile Z reacts cleanly with acetone and crotonaldehyde (-30ºC, 2 h) to give the silylated alcohols g^3 and g^3 , after quenching (NH₄Cl aq)(Scheme 2). The anion Z can also be deuterated (D₂0) or alkylated to give 10^3 and 11^3 respectively (Scheme 2).

Compounds analogous to 8 are useful intermediates in the synthesis of 9,10-didehydronorzizaene derivatives,⁴ and the trimethylsilyl analogue of 12 has been used as a C_4 synthon 13 in much synthetic work by Trost and his co-workers.⁵ The present route is an easy entry into these powerful synthetic methods.

It seems likely that the change of regiochemistry may be a consequence of reversibility in the silyl-cupration, for which we already have evidence.¹

- 1. I. Fleming and F. J. Pulido, J. Chem. Soc., Chem. Commun., 1010 (1986).
- 2. I. Fleming and D. Marchi, <u>Synthesis</u>, 560 (1981); I. Fleming and N. K. Terrett, <u>J. Organomet</u>. Chem., 294, 99 (1985).
- 3. 3(E=H): R_r(hexane)=0.4. IR(film): 1609, 1253, 1124 cm ⁻. H-NMR(CDCl₂):d 7.4-7.75 (m, 5H), 5.75 (m, lH), 5.42 (m, lH), 1.9 (d, J=1.3 HZ, 3H), 0.44 (6, 6H).13 C-NMR:6 -3.42 (Me-Si), 22.56 (Me-C=), 126.60 $(H_2C=)$, 127.85, 129.02, 133.98 (Ar CH groups), 139.17 (Ar quaternary C), 146.17 (olefinic quaternary C). MS: $m/e=176$ (M⁺, 21%). 4: R_F(hexane)=0.34. Calc., C, 43.72; H, 5.00; found:C, 43.84; H, 5.08. IR(film):1606, 1260, 1123 cm⁻¹.¹H-NMR(CDCl₃): δ 7.4-7.7 (m, 5H), 5.72 (d, J=1.2 Hz, 1H), 5.59 (d, J=1.2 Hz, 1H), 2.55 (s, 2H), 0.5 (s, 6H). 13 C-NMR: $5'$ -2.88 (Me-Si), 31.09 (CH₂-C=), 104.65 (olefinic quaternary C), 127.27 (H₂C=), 127.87, 129.08, 133.80 (Ar CH groups), 138.98 (Ar quaternary C). 5: R_F(pentane)=0.37. Calc., C, 62.68; H, 7.17; found: C, 62.89; H, 7.27. H-NMR(CDCl_a): ∂ 7.4-7.7 (m, 5H), 5.6 (d, J=1.1 Hz, 1H), 5.5 (d, J=1.1 Hz, 1H), 4.35 (s, 2H), 0.45 (s, 6H). 13 C-NMR: $\overline{\theta}$ -2.72 (Me-Si), 49.13 (CH₂-Cl), 130.07 (H₂C=), 128.08, 129.35, 134.03 (Ar CH groups), 138.89 (Ar quaternary C), 145.45 (olefinic quaternary C). \hat{g} : R_F (pentane)=0.36. Calc., C, 43.72; H, 5.00; found:C, 43.78; H, 5.12.¹H-NMR(CDC1₃): δ 7.4-7.8 $(m, 5H)$, 6.32 (d, J=1.2 Hz, 1H), 5.91 (d, J=1.2 Hz, 1H), 3.5 (s, 2H), 0.45 (s, 6H).¹³C-NMR: δ -1.98 (Me-Si), 28.89 (CH₂-I), 133.88 (H₂C=), 127.96, 129.27, 134.14 (Ar CH groups), 139.23 (Ar quaternary C), 148.13 (olefinic quaternary C). <u>B</u>: R_r(hexane)=0.12. IR(film): 3480 cm⁻¹.¹H-NMR $(CDCL_2): \delta$ 7.4-7.75 (m, 5H), 5.05 (d, J=1.0, 1H), 4.75 (d, J=1.0 Hz, 1H), 2.05 (s, 2H), 1.4 (s, 6H), 0.47 (s, 6H). 2: R_F(hexane:ether, 7:1)=0.20. IR(film): 3450, 1640, 975 cm⁻¹.¹H-MMR(CDCl₃): δ 7.4-7.7 (m, 5H), 5.55-5.9 (m, 2H), 5.15 (m, 1H), 4.8 (m, 1H), 4.4 (d, J=7 Hz, 1H), 2.0 (s, 2H), 1.9 (d, J=6 Hz, 3H), 1.5 (br s, 1H), 0.45 (s, 6H). 10: R_F (hexane)=0.49. IR(film): 2250, 900 cm⁻¹.¹H-NMR(CDC1₃): δ 7.4-7.8 (m, 5H), 5.1 (m, 1H), 4.9 (m, 1H), 1.95 (br s, 2H), 0.4 (s, 6H). 11: R_F(hexane)=0.4.¹H-NMR(CDC1₃): δ 7.3-7.6 (m, 5H), 5.0 (m, 1H), 4.85 (m, 1H), 2.05 (br s, 2H), 1.85 (br s, 3H), 0.4 (s, 6H). 12: R_F (hexane:ether, 7:2)=0.2. IR(film):3360, 890 cm⁻¹.¹H- $NMR(CDC1_{3}): \stackrel{\sim}{\delta} 7.3-7.6$ (m, 5H), 4.91 (br s, 1H), 4.68 (br s, 1H), 3.84 (br s, 2H), 1.78 (s, 2H), 0.37 (s, 6H).¹³C-NMR:o² -2.90, 22.70, 67.13, 107.75, 127.91, 129.28, 133.65, 147.19.
- 4. H. M. R. Hoffmann, A. Weber and R. J. Giguere, Chem. Ber., 117, 3325 (1984).
- 5. B. M. Trost, D. M. T. Chan and T. N. Nanninga, **Org.** Synth., 62, 58 (1984); B. M. Trost and J. E. Vincent, J. Am. Chem. Soc., 102, 5680 (1980), B. M. Trost and D. M. T. Chan, J. Am. Chem. Soc., 101, 6429 (1979); B. M. Trost and D. P. Curran, J. Am. Chem. Soc., 103, 7380 (1981).

(Received in UK 19 February 1988)